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TRANSFORMATIONS IN GEOMETRY 
CLASS FROM THE GET-GO

We can introduce transformations–rigid motions and dilations–at the 
foundational stages of a geometry course.  

It is not as challenging as one might think; sometimes it is easier than 
familiar ways.

Big payoff:  You have everything you had before plus a powerful new 
tool ready to use.



OUTLINE OF THIS TALK

1. Previews of thinking with transformations

2. Rigid motions, congruence and triangles 

3. Dilation Axiom and Euclidean Parallel Postulate.

4. Similitudes and similarity in general.

5. Problem-solving with dilations.



PREVIEW: HALF-TURN 
SYMMETRY

• A half-turn is a rotation of 180 degrees.  If H is a 
half-turn, for any A, let A’ = H(A).

• The center M is the midpoint of AA’ and H(A’) = A.

• The image of a line k not through M is a line k’ 
parallel to k.

• A figure F has half-turn or point symmetry if H(F) 
= F,

• Angles related by H are congruent, as in this familiar 
figure with point symmetry.
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PREVIEW: 
PARALLELOGRAMS

• Suppose points 
ABCD have a half-
turn symmetry.
• There is a half-turn 

H with H(A)=C and 
H(B) = D, with 
center M the 
midpoint of both AC 
and BD.
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PREVIEW: 
PARALLELOGRAMS

• Then the opposite sides of 
ABCD must be parallel and 
congruent.  Converse also true.
• In fact, parallelograms can be 

defined as quadrilaterals with 
half-turn symmetry.
• All the usual properties follow 

immediately.
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PREVIEW: POLYA 
SQUARE IN 
TRIANGLE

• Given a triangle ABC.

• Polya poses the problem of 
constructing a square 
inscribed in the triangle, as 
shown in this figure.
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PREVIEW: POLYA 
SQUARE IN TRIANGLE

• Polya’s solution is to partially solve the 
problem by constructing a square that 
touches at 3 vertices.

• This small square is a scale model of the 
desired figure, if we add a line parallel to 
BC.
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PREVIEW: POLYA 
SQUARE IN 
TRIANGLE

• Then we can dilate with 
center A so that the image 
square has a vertex on BC. 

• This image point is 
constructed by intersecting 
BC with the red line 
through A and the vertex of 
the blue square not on a 
side of ABC,  
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PREVIEW: 
NAPOLEON’S 

THEOREM

• The preceding examples 
have nice proofs without 
transformations. This one is 
hard without rotations.

• Construct 3 equilateral 
triangles on the sides of any 
triangle.  Then the centers 
of  these triangles form an 
equilateral triangle



1. The plane has POINTS and LINES; any two distinct points A and B lie on 
a unique line.

2. The plane is provided with a DISTANCE measure 0≤|AB| between any 
points A and B.  With this measure lines look like the real number line with 
its usual distance.

3. The plane is provided with an ANGLE MEASURE 0 ≤ ∡ABC ≤ 180 for 
points B and C distinct from A -- with the usual properties.

4. To establish that the plane is 2D and not 3D, we assume that the 
complement of a line is two HALF-PLANES with the usual properties.

STARTING POINT: BASIC AXIOMS



RIGID MOTIONS: TRANSFORMATIONS THAT 
PRESERVE DISTANCE AND ANGLE MEASURE

• If T is a rigid motion, always |T(A)T(B)| = |AB|.

• If T is a rigid motion, always ∡T(A)T(B)T(C)  = ∡ABC.

• Rigid motions map lines to lines, since distinct points 
A, B, C are collinear if and only if ∡ABC = 0 or 180.  

• So, a rigid motion is a map that preserves all the 
geometric properties in the axioms.



DEFINING CONGRUENCE USING 
RIGID MOTIONS

• Definition:  A set F is CONGRUENT to G there is a 
rigid motion T that maps F onto G. 

• In this case, G is also congruent to F, since the 
inverse T–1 maps G to F  (T–1 is also a rigid motion).

• Informally, two figures are congruent if you can 
superimpose one on the other.  Greek geometers of 
antiquity had this intuitive idea too but had no math 
language for it.   But we have the language of functions.



ADVANTAGES OF THIS DEFINITION VS. 
SAS TRIANGLE CONGRUENCE

• Defines congruence as a 
concept for any pair of 
figures, such as two circles or 
ellipses. Also, lines, or 
disconnected figures!

• One catch:  To make this 
useful, we need a supply of 
rigid motions



HOW TO GET RIGID MOTIONS

• To get a supply of rigid motions, we start with some simple 
types and then get more by composing them.

• Axiom (less visual form):  

• For any line m, there is a rigid motion, distinct from 
the identity map, that fixes the points of m.

• Note:  If a rigid motion fixes points A and B, it fixes all the 
points of line AB, because of distance.



LINE REFLECTION & AN AXIOM WITH 
MORE CONCRETE WORDING

Suppose a transformation T fixes the points 
of m; and for any point C not on m, the line 
m is the perpendicular bisector of CT(C).

T is called line reflection in m, denoted 
Rm.

Axiom (more visual version):  

For every line m, the line reflection in 
m exists and is a rigid motion.



THESE AXIOMS ARE EQUIVALENT

• Assume T fixes A and B and  T(C) ≠ C.  If we connect 
points with line segments, we see relationships if T is a 
rigid motion.

• (a) There is only one possible value D for T(C) 
because ∡CAB = ∡DAB and  |DA| = |DC|.

• (b) T(MC) = MD since M is on the line AB.

• (c) All the pairs of marked angles and segments are 
congruent!  This contains isosceles triangle properties!

• (d) Since line AB is the perpendicular bisector of CD, 
T is reflection in line AB
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BASIC CONGRUENCE 
THEOREMS

• Case 0:  Any two points A and B are 
congruent.
• Yes, we need to prove this using the 

definition! We must find a rigid motion that 
takes A to B.  
• Reflection in the perpendicular bisector 

works!
• What rigid motion will you use if A = B?
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CONGRUENCE OF 
SEGMENTS

• Suppose AB and CD are 
segments of equal length. 

• Can we find a rigid motion that 
takes AB to CD?

• We just learned how to map A 
to C.
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MOVING THINGS: 
SEGMENTS

• If A = C,  triangle ABD is 
isosceles. Go directly to step 2.

• Step 1.  Assuming A≠C, reflect 
AB in the perpendicular bisector 
of AC. 

• The image of AB is now CB’, 
with |B’C| = |DC|.  If B’ = D, we 
are done; stop here. 

B'
B

A

C

D



ANY TWO SEGMENTS OF 
THE SAME LENGTH ARE 

CONGRUENT!

• Step 2.  Triangle CDB is 
isosceles.  Reflect segment CB’ 
in the angle bisector of angle 
DCB’.  CB’ reflects to CD.

• Thus, there is a rigid motion that 
is either one line reflection or 
the product of two reflections 
that maps AB to CD.  
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TRIANGLE 
CONGRUENCE TESTS

Side-Angle-Side (SAS): 

Let ABC and DEF be triangles with |AB|= 
|DE| and |AC|=|DF| and ∡BAC= ∡EDF.  
Then the triangles are congruent.

Start by mapping AB to DE, then 
construct one more reflection if needed.

The other triangle congruence tests,  ASA 
and SSS, follow the same pattern..  
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CONGRUENCE COMMENTS

• With SAS proved, we are back in the familiar setup for plane geometry.

• For any triangles ABC and DEF, there is at most one rigid motion that 
takes A, B, C, to D, E, F; for a rigid motion with three fixed points is the 
identity.  

• SSS for triangles implies that a transformation that preserves distances 
(an isometry) is also a rigid motion.  Important:  We can’t start with 
isometries in the Axiom.  Need those angles to get us started.

• Looking ahead for more advanced geometry, the rigid motion 
congruence definition extends to other geometries, such 3-space (or 
space-time) or spherical geometry. 



ABOUT THOSE OTHER RIGID 
MOTIONS

In addition to line reflections, what are other Euclidean plane 
rigid motions?

1. The composition of reflections in two lines is a rotation 
with center at the point of intersection if the lines 
intersect and is a translation if they do not intersect. 
(preserving orientation)

2. The composition of three line-reflections is a glide 
reflection, or a line reflection in some cases.  (reversing 
orientation)

• Example: The figure has 4 line-reflection symmetries.  The 
4 rotations that are symmetries are products of pairs of line 
reflections.



SIMILARITY

With what we have so far, we can prove a lot.  But we 
cannot prove some other things, for example:

• Sum of the angles of a triangle = 180 degrees.  

• Pythagorean Theorem

This is because, so far, we could be in the non-Euclidean 
plane.  To be Euclidean, we need the Euclidean Parallel 
Property or the equivalent:  Our equivalent will be similarity 
via the Dilation Axiom.



TRANSFORMATIONS AND SIMILARITY

• A Similarity Transformation with scaling factor k>0 is a 
transformation T that 

1. Preserves angles

2. Scales distance by k, i.e., for any A, B, |T(A)T(B)| = k|AB|.

• Two figures F and G are similar if there is a similarity transformation T 
than maps F onto G.

• Note: T-1 is also a similarity transformation with scaling factor 1/k.

• Note: Rigid motions are similarity transformations with k = 1.



DILATION: DEFINITION, THEN AXIOM

• The dilation D.P,k with center P and 
ratio k>0 maps P to P ; for other A:

•  D.P,k (X) = X’ where X’ is the point 
on ray PX with |PX’| = k|PX|.

• In the figure, k = 7/4. C''
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Dilation Axiom:  Every dilation is a similarity transformation.



TRANSFORMATIONS AND SIMILARITY 
AND EUCLIDEAN PARALLEL POSTULATE

• The existence of similar figures in the plane at different scale is 
equivalent to the Euclidean Parallel Postulate.  It implies flatness; 
try this on a sphere!

• EPP: For any line m and point P not on m, there is 
exactly one line through P that is parallel to m.

• Assuming the DILATION AXIOM, we can prove EPP as a 
theorem.

• From this rest of Euclidean Plane Geometry follows.



DILATION AXIOM IMPLIES THE 
EUCLIDEAN PARALLEL 

POSTULATE

• Given P and m.  

• Construct PM perpendicular to m.  Let line q 
be any lint not perpendicular to line PM.

• Let Q be on q and QN be perpendicular to 
PM.

• Dilate triangle PNQ with center P and ratio 
|PM|/|PN|

• Line n dilates to m, since both lines are 
perpendicular to PM and line q dilates to itself.

• So, Q’, the image of Q, is on both m and q.
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DILATION AND PARALLEL 
SEGMENTS

• Given two parallel segments AB and CD of 
different lengths.

• Lines AC and BD intersect at a point P.  
Lines  AD and BC. intersect at a point Q.

• P and Q are centers of unique dilations, one 
takes AB the CD and the other takes AB to 
DC.  One has positive ratio k = |CD|/|AB| 
and the other has negative ratio – k..  P 
and Q are centers of similitude.

• The sign indicates whether the two 
ordered segments have the same direction. 
Half-turns are dilations with ratio -1.
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TRIANGLES WITH CORRESPONDING 
SIDES PARALLEL ARE SIMILAR

• Suppose that ABC and A’B’C’ are two triangles 
with these pairs of sides parallel:
• AB and A’B’, BC and B’C’, and CA and C’A’
Then the two triangles are similar.
Proof;  There is a unique dilation that takes AB to 
A’B’.  This dilation will also take the entire triangle 
ABC to A’B’C’ since the image of a line is a 
parallel line. So, the image of line BC is line B’C’ 
and the image of line CA is line C’A’.
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CIRCLES AND CENTERS 
OF SIMILITUDE

• Given two circles of different 
radius, the centers of similitude 
for any pair of parallel diameters 
are centers of similitude for the 
two circles.
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COMMON TANGENTS AND 
CENTERS OF SIMILITUDE

• The centers of similitude P and 
Q of two circles may be within 
both or outside of both circles, 

• If such a center is outside both, 
any tangent line to one circle 
through the point is also tangent 
to the other circle. 
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A CIRCLE CONSTRUCTION 
PROBLEM

• Given two lines and a point B not on either line, as in the 
figure, construct a circle tangent to both lines passing 
through the point.

• It is easy to construct a circle tangent to both lines by 
choosing a point on an angle bisector as center, then 
dropping a perpendicular segment to be a radius.
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A CIRCLE CONSTRUCTION 
SOLVED BY DILATION 

• A solution to the problem can be obtained by 
dilating with center A the circle tangent to the 
two lines.

• One can construct two points on the circle that 
can be dilated to B by intersection the circle 
with line AB.

• A dilation with center A that sends one of these 
points to B will dilate the given circle to a 
solution of the problem.
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SOLVING CONCURRENCE OF 
ALTITUDES BY DILATION 

• Given a triangle ABC, the perpendicular 
bisectors of the sides are concurrent at a 
point P equidistant from A, B, and C.  

• For the midpoint triangle A’B’C’, these p.b. 
of ABC are concurrent altitudes of A’B’C’.

• But there is a dilation of ratio -2 with 
center the intersection G of BB’ and CC’ 
that maps the altitudes of A’B’C’ to the 
altitudes of ABC, which must also be 
concurrent.  G is CENTROID ABC!
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TEACHING SUGGESTION: 
RATIOS AND SIMILARITY

• If triangles ABC and DEF are similar with scaling factor k, then the internal 
ratios such as AB/AC and DE/DF are equal, but the ratio will not be the ratio 
of k = |DE|/|AB| of the similitude.

• Students may be confused by the two kinds of  ratios.

• If seems to help to refer to the scaling number as the scaling FACTOR and 
avoid word ratio for this number, at least at the outset.  

• It seems to help that the scaling factor is associated with a transformation, so 
can be visualized as a kind of motion.



SOME WAYS TO INTRODUCE RIGID 
MOTIONS INTO A GEOMETRY COURSE

• From the more formal to the more informal.

1. Replace the SAS axiom in your current approach with the Reflection 
Axiom.  As soon as possible, prove SAS with this new set of axioms as 
we did here.

2. Instead of replacing the SAS axiom, just add the Reflection Axiom.  
Now you have more axioms than you need, but you can reason with 
them all the same.

3. Although all the other rigid motions are reflection products, in a less 
formal course, just assume they all exist from the start.



ADVICE: RELAX, MAKE SMALL CHANGES

• When talking about Rigid Motions as a kind of revolutionary idea, let’s 
remember that in the end we are talking about the same Euclidean 
Plane as before, with a few extra tools. The same stuff is true.  Once 
you get through the introduction, all the same proofs will still work.

• There is NO reason to include transformations in every proof,  The 
best style is to use the right tool for each job,  You can use several 
approaches and discuss the differences with your students.

• Don’t be overambitious in making changes.  It is better to make some 
modest changes and see how they work out, especially if you are happy 
with how you already are teaching geometry..



LOOKING FORWARD TO LATER MATH

The introduction of rigid motions and similarities, fits well 
into many future topics.
• Orientation is preserved by even products of line 

reflections.  How about oriented congruence?
• Lots to do with symmetry and even self-similarity and 

fractals.
• The definitions of rigid motion and congruence extend to 

3-space and STEM applications.
• In the (x,y) plane, transformations can simplify some  

formulas. Plane transformations are lead-in to matrix 
transformations in n-space.



RESOURCES FOR LESSONS

• My presentations at this page at UW: : www.math.washingon.edu/~king/write

• H. H. Wu’s homepage at UC Berkeley Math Department.  Wu was really a 
motivator for Common Core geometry.  This page has links to two of his books 
that offer examples for teaching with rigid motions.

• Any treatment of isometries or symmetry in a geometry book, the Math Teacher,  
or online source.

• Online sources for the Common Core, or new textbooks such as the ones from 
Illustrative Mathematics. The library of geometry explorations for Geogebra.

• Maybe some ideas from my book, Geometry Transformed.



EYES ON THE PRIZE

• The goal is for your students to have a rich 
understanding of geometrical relationships 
and how to reason about them.

• There are many paths to get there.

• And there should be some beauty and 
enjoyment along the way.


